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ABSTRACT  
Volcanic clouds composed of solid particles, volcanic gases, and related aerosols evolve from the time of 
eruption until the cloud constituents are removed from the atmosphere. While airborne, they have the potential 
to cause damage to aircraft, ranging from acute encounters that can lead to an immediate hazard to flight 
safety, to chronic wear on aircraft components, to benign encounters where no observable impacts occur. We 
highlight the evolution of cloud properties through three stages: Stage 1 (recent), through Stage 2 
(intermediate), to Stage 3 (final) and comment on the current observational capabilities and challenges of 
detection and characterization of volcanic clouds. 

1.0 INTRODUCTION 

Volcanic clouds produced by explosive eruptions are well known to present acute and chronic hazards to 
aviation, resulting in disruptions to flight operations, safety of flight concerns, and increased frequency of 
maintenance procedures [1-3]. Volcanic clouds are composed of a mixture of solid particles (rock, glass, 
and mineral fragments), volcanic gases (water, sulfur dioxide, hydrogen sulfide, carbon dioxide, and 
hydrogen halides) and a variety of aerosols that form from the gaseous components. The volcano explosivity 
index (VEI) is used to characterize the relative magnitude of eruptions based primarily on the volume of 
erupted products and the maximum volcanic cloud height [4]. While imperfect, it does provide a method to 
compare eruptions. Eruptions of greatest concern to aircraft at cruise altitude typically fall in the range of 
VEI 3 to VEI 6, with eruption volumes of 0.01 to 10 km3 (on a logarithmic scale) and cloud altitudes of 3 
to >25 km. The global frequency of eruption is inversely proportional to eruption size, with a VEI 3 eruption 
occurring every few months, VEI 4 every year, VEI 5 every 10 years and VEI 6 every 100 years (Table 1).  

Table 1: Volcanic Explosivity Index (VEI) and related parameters. 

VEI Cloud 
Height (km) 

Eruption 
Volume (m3) 

Duration 
(hours) 

Tropospheric 
Injection 

Stratospheric 
Injection 

Frequency 

0 < 0.1 m < 1x104 < 1 Negligible None Constant 
1 0.1 to 10 > 1x104 < 1 Minor None Daily 
2 1 to 5 > 1x106 1 to 6 Moderate None Weekly 
3 3 to 15 > 1x107 1 to 12 Substantial Possible Yearly 
4 10 to 25 > 1x108 1 to >12 Substantial Definite ≥ 10 years 
5 > 25 > 1x109 6 to > 12 Substantial Significant ≥ 50 years 
6 > 25 > 1x1010 > 12 Substantial Significant ≥ 100 years 
7 > 25 > 1x1011 > 12 Substantial Significant ≥ 1000 years 
8 > 25 > 1x1012 > 12 Substantial Significant ≥ 10,000 years 
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2.0 VOLCANIC CLOUD EVOLUTION 

Volcanic clouds show variation in erupted magma composition (as measured by silica content), particle size 
distribution (a function of the fragmentation process), and the amount of volcanic gas released with the solid 
ash particles. These properties evolve over time as the cloud disperses in the atmosphere, which changes the 
hazards, as well as the methods used to detect and track them. We propose that three stages in cloud 
evolution can be used to describe some of these changes.  

Stage 1 volcanic clouds pertain to the first several hours of residence time in the atmosphere (Fig. 1A). 
During this stage, eruption column processes are active (formation of ice particles and aggregate growth) 
[5-7] and volcanic material can be distributed many kilometers vertically. The majority of ash particles with 
diameters less than about 0.5 mm sediment out of the cloud during this time period. Eruptions that produce 
clouds large enough to pose a hazard to aircraft at cruise altitude are typically visible in meteorological 
satellite data, provided they are not obscured or mixed with significant meteorological clouds (Fig. 1B). 
They contain particles large enough to be observed on ground-based meteorological radar and can rise to 
aircraft cruise altitude (>9 km) within minutes of eruption onset (Fig. 1C) [8]. Many of the most serious 
aircraft encounters that have caused acute aircraft damage resulting in engine shutdown have occurred in 
the first several hours of volcanic cloud residence times within several hundred kilometers of the eruption 
site. [1]  

Figure 1: Stage 1 volcanic clouds from Redoubt Volcano, Alaska in 2009 (A) Photograph of the volcanic eruption 
taken from an aircraft at an altitude of ~35,000 ft asl on March 28, 2009 at 01:45 UTC. (B) Thermal infrared satellite 
image of a Stage 1 volcanic cloud (red arrow) collected on March 24, 2009 at 04:30 UTC. In this image the 
temperature scale ranges from black (warm) to white (cold). (C) Sequence of radar cross sections through a Stage 
1 volcanic cloud collected on March 23, 2009. Start time of radar scan (~90 second duration) indicated in UTC. 
Radar reflectivity ranges from 20 to 60 dBZ (green to purple). 

Volcanic Cloud Evolution: 
Characteristics, Observational Capabilities and Challenges 

3 - 2 STO-MP-AVT-272 

PUBLIC RELEASE 

PUBLIC RELEASE 



Stage 2 volcanic clouds are those with residence times in the atmosphere of several hours to several days 
after eruption. During this stage there is the potential for acute (safety of flight), chronic (increased wear), 
or non-damaging aircraft encounters. [1,9]. Volcanic cloud expansion by wind advection and diffusion 
shears the cloud into layers several km thick vertically. Particle aggregation and fallout of very-fine to fine-
grained ash occurs, and in many cases the volcanic ash and sulfur dioxide constituents of the cloud are able 
to be observed using thermal infrared [10] and ultraviolet remote sensing methods [11] (Fig. 2). The volcanic 
ash “signal” (e.g., thermal infrared brightness temperature difference) decreases more rapidly than the sulfur 
dioxide “signal” in days following the eruption. The volcanic ash and sulfur dioxide clouds typically follow 
similar trajectories as the cloud disperses, as seen in the example from Kasatochi shown in Fig. 2. However, 
in other cases there is a vertical separation of volcanic ash and gas, which in the presence of wind shear will 
transport the cloud constituents in different directions [12-13].  

Figure 2: Stage 2 volcanic ash (A, C, and E) and sulfur dioxide (B, D, and F) clouds from the 2008 eruption of 
Kasatochi Volcano, Alaska. The location of the volcano is shown by the red triangle. The cloud location is shown 
at 20 hours (A-B), 40 hours (C-D) and, 66 hours (E-F) after eruption onset. The volcanic ash extent as detected by 
the GOES imager is depicted as the thermal infrared brightness temperature difference. Note that the magnitude 
of the signal does not scale linearly with the mass of airborne ash. The sulphur dioxide cloud as detected by the 
OMI sensor is depicted in Dobson Units, which is the retrieved total column abundance of the UV absorbing gas. 
The location of a non-damaging aircraft encounter over western Canada is shown as a red star in Fig. 2 E-F and 
described in Guffanti et al. [9] 

Stage 3 volcanic clouds are observed in the days to weeks following an eruption, until the cloud is no longer 
detectable using remote sensing methods. These drifting volcanic clouds may be transported thousands of 
kilometers from the volcano (Fig. 3A), and in some cases circumnavigate the earth. They are typically 
present as very thin layers less than a kilometer thick (Fig. 3B, Fig. 4C) and can be cause for concern for 
pilots [14]. Very-fine-grained ash (micron size) may be present in these clouds, but at very low total column 
mass values that are below the detection limit of current thermal-infrared satellite techniques (less than 0.01 
to 0.1 g/m2) [15-16].  These clouds are observed using visible [17], ultraviolet [18], and thermal infrared 
[19] remote sensing techniques that can detect sulfate aerosol (Fig. 4A) and sulfur dioxide [20] (Fig. 4B). 
Acute damage to aircraft from these clouds is unlikely but there is the potential for chronic aircraft damage 
over time. 
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with more planned for the future. The developments call for automated techniques to identify regions and 
time periods of potential volcanic ash hazards for evaluation by skilled analysts. Satellite and geophysical 
monitoring data sources exist that can improve operational response and hazard notification, but they are 
currently widely dispersed at various space and meteorological agencies, as well as volcano observatories. 
Aviation user needs to address chronic exposure concerns require information on ash concentration 
observations and forecasts. Continued evaluation of the capabilities of satellite retrievals schemes and 
dispersion model output is required. 
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